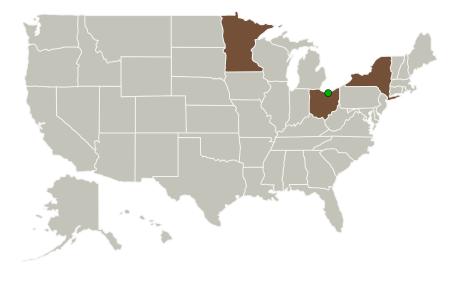
Wide Bandgap Nanostructured Space Photovoltaics, Phase I



Completed Technology Project (2010 - 2011)

Project Introduction

Firefly, in collaboration with Rochester Institute of Technology, proposes an STTR program for the development of a wide-bandgap GaP-based space solar cell capable of efficient operation at temperatures above 300oC. Efficiency enhancement will be achieved by the introduction of InGaP quantum wells within the active region of the wide-gap base material. The introduction of these nanoscale features will enable harvesting of low-energy photons that are normally lost by transmission through the wide bandgap material. Successful completion of the proposed work will combine the high-temperature, radiation-tolerant wide-bandgap material with current-enhancing nanostructures to produce a high efficiency space solar cell capable of operating at higher temperatures suitable for near-sun missions. This achievement can result in significant cost savings as active cooling of PV systems would be unnecessary with this technology.

Primary U.S. Work Locations and Key Partners

Wide Bandgap Nanostructured Space Photovoltaics, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Wide Bandgap Nanostructured Space Photovoltaics, Phase I

Completed Technology Project (2010 - 2011)

Organizations Performing Work	Role	Туре	Location
Firefly Technologies	Lead Organization	Industry Women-Owned Small Business (WOSB)	Shakopee, Minnesota
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio
Rochester Institute of Technology(RIT)	Supporting Organization	Academia	Rochester, New York

Primary U.S. Work Locations		
Minnesota	New York	
Ohio		

Project Transitions

January 2010: Project Start

January 2011: Closed out Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140653)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Firefly Technologies

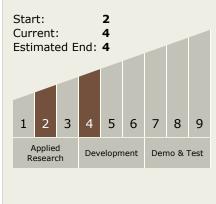
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

David A Forbes

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Wide Bandgap Nanostructured Space Photovoltaics, Phase I

Completed Technology Project (2010 - 2011)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 - └─ TX03.1 Power Generation and Energy Conversion
 └─ TX03.1.1 Photovoltaic

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

